Answer :

**It is given in the question that:**

**AB = PQ**

**BC = QR**

**And,**

**AM = PN**

**(i)** To Prove:

BC = BM and QR = QN (AM and PN are medians)

BC = QR

BC = QR

In

AM = PN (Given)

AB = PQ (Given)

BM = QN (Proved above)

Side-Side-Side (**SSS**)

**Rule**. Side-Side-Side is a

**rule**used to prove whether a given set of triangles are

**congruent**. The

**SSS rule**states that: If three sides of one triangle are equal to three sides of another triangle, then the triangles are

**congruent**.

Therefore,

By SSS congruence rule,

**(ii)**

To Prove:

Proof:

In and

AB = PQ (Given)

∠ABC = ∠PQR (By c.p.c.t)

BC = QR (Given)

Therefore,

Two sides and included angle (**SAS**) Definition: Triangles are

**congruent**if any pair of corresponding sides and their included angles are equal in both triangles.

By SAS congruence rule,

Hence, Proved.

Rate this question :

Prove that the anRS Aggarwal & V Aggarwal - Mathematics

If the sides of aRD Sharma - Mathematics

D is any point onNCERT Mathematics Exemplar

In a triangle *RD Sharma - Mathematics*

In Δ *ABC**RD Sharma - Mathematics*

In Δ *PQR**RD Sharma - Mathematics*

<span lang="EN-USRS Aggarwal & V Aggarwal - Mathematics

Prove that the peRD Sharma - Mathematics

In Fig. 10.25, <iRD Sharma - Mathematics

In a <span lang="RD Sharma - Mathematics