Answer :

Given: ΔABC with AB = AC

In ΔABC,

AB = AC (given)

⇒ ∠ACB = ∠ABC (opposite angles to equal sides are equal)

1/2 ∠ACB = 1/2 ∠ABC (divide both sides by 2)

⇒ ∠OCB = ∠OBC …(1) (As OB and OC are bisector of ∠B and ∠C)

Now, in ΔBOC,

∠OBC + ∠OCB + ∠BOC = 180° (angle sum property)

∠OBC + ∠OBC + ∠BOC = 180° (from (1))

⇒ 2 ∠OBC + ∠BOC = 180°

⇒ ∠ABC + ∠BOC = 180° (because OB is bisector of ∠B)

⇒ 180° - ∠DBA + ∠BOC = 180°

⇒ - ∠DBA + ∠BOC = 0

⇒∠DBA = ∠BOC Hence proved.

Rate this question :

Prove that the anRS Aggarwal & V Aggarwal - Mathematics

If the sides of aRD Sharma - Mathematics

D is any point onNCERT Mathematics Exemplar

In a triangle *RD Sharma - Mathematics*

In Δ *ABC**RD Sharma - Mathematics*

In Δ *PQR**RD Sharma - Mathematics*

<span lang="EN-USRS Aggarwal & V Aggarwal - Mathematics

Prove that the peRD Sharma - Mathematics

In Fig. 10.25, <iRD Sharma - Mathematics

In a <span lang="RD Sharma - Mathematics