Answer :
We have
Angle sum property of triangles states that the sum of angles in a triangle is always 180°.
In ∆ABC,
By Angle Sum Property of triangles, we get
∠ABC + ∠BCA + ∠CAB = 180°
⇒ 90° + ∠BCA + ∠CAB = 180° [∵ it is given that, ∠ABC = 90°]
⇒ ∠BCA + ∠CAB = 180° - 90°
⇒ ∠BCA + ∠CAB = 90° …(i)
In ∆ADC,
By Angle Sum Property of triangles, we get
∠ADC + ∠ACD + ∠CAD = 180° …(ii)
In ∆ACE,
By Angle Sum Property of triangles, we get
∠ACE + ∠CAE + ∠AEC = 180° …(iii)
Adding equations (ii) and (iii), we get
(∠ADC + ∠ACD + ∠CAD) + (∠ACE + ∠EAC + ∠AEC) = 180° + 180°
[∵ AD and CE are the bisectors of angles A and C respectively]
⇒ ∠ADC + ∠ACE + (3 × 45°) = 360°
⇒ ∠ADC + ∠ACE + 135° = 360°
⇒ ∠ADC + ∠ACE = 360° - 135°
⇒ ∠ADC + ∠ACE = 225°
Thus, ∠ADC + ∠ACE = 225°
Rate this question :




Prove that the an
RS Aggarwal & V Aggarwal - MathematicsIf the sides of a
RD Sharma - MathematicsD is any point on
NCERT Mathematics ExemplarIn a triangle
RD Sharma - MathematicsIn Δ ABC
RD Sharma - MathematicsIn Δ PQR
RD Sharma - Mathematics<span lang="EN-US
RS Aggarwal & V Aggarwal - MathematicsProve that the pe
RD Sharma - MathematicsIn Fig. 10.25, <i
RD Sharma - MathematicsIn a <span lang="
RD Sharma - Mathematics