Answer :

Given equation of curve is y = –x3 + 3x2 + 9x – 27


Now applying first derivative, we get



Now applying the sum rule of differentiation and the differentiation of the constant term is 0 we get



Now applying the power rule of differentiation we get




This is the slope of the given curve.


Now we will differentiate equation (i) once again to find out the second derivative of the given curve,



Now applying the sum rule of differentiation and the differentiation of the constant term is 0 we get



Now applying the power rule of differentiation we get




Now we will find the critical point by equating the second derivative to 0, we get


-6(x-1) =0


x-1=0


x=1


Now we will differentiate equation (ii) once again to find out the third derivative of the given curve,



Now applying the sum rule of differentiation and the differentiation of the constant term is 0 we get



Now applying the power rule of differentiation we get



So the maximum slope of the given curve is at x=1


Now we will substitute x=1 in equation (i), we get




Hence the maximum slope of the curve y = –x3 + 3x2 + 9x – 27 is 12.


So the correct option is option B.

Rate this question :

How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation
caricature
view all courses
RELATED QUESTIONS :

If the sum of theMathematics - Board Papers

A metal box with Mathematics - Board Papers

Show that aRD Sharma - Volume 1

Find the local maMathematics - Board Papers

Prove that the seMathematics - Board Papers

Prove that the raMathematics - Board Papers

Prove that the leMathematics - Board Papers