Q. 125.0( 1 Vote )

# Find the modulus of each of the following complex numbers and hence express each of them in polar form: Let Z = 3√2i - 3√2 = r(cos + isinθ)

Now, separating real and complex part , we get

-3√2 = rcosθ ……….eq.1

3√2 = rsinθ …………eq.2

Squaring and adding eq.1 and eq.2, we get

36 = r2

Since r is always a positive no., therefore,

r = 6

hence its modulus is 6.

now, dividing eq.2 by eq.1, we get,  Since , and tanθ = -1 . therefore the θ lies in secothe nd quadrant.

Tanθ = -1 , therefore θ = .

Representing the complex no. in its polar form will be }

Rate this question :

How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Related Videos  Polar & Euler Form of Complex Numbers on Argand Plane32 mins  Interactive Quiz Time - Polar & Euler Form of complex number58 mins  Practice session | Argument of complex numbers61 mins  Modulus & Conjugate of Complex Number | Ready for a Quiz?48 mins  Interactive Quiz on Quadratic Equations73 mins  Special Quiz on Argument of complex numbers56 mins  Polar & Euler Form of Complex Number on Argand Plane58 mins  Questions on Modulus & Conjugate of Complex Number62 mins  Questions Based on Polar & Euler Form of Complex Number63 mins  Interactive Quiz on Quadratic Equations-0252 mins
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation view all courses 