Q. 65.0( 2 Votes )

# Prove that 6i^{50} + 5i^{33} – 2i^{15} + 6i^{48} = 7i.

Answer :

Given: 6i^{50} + 5i^{33} – 2i^{15} + 6i^{48}

To prove: 6i^{50} + 5i^{33} – 2i^{15} + 6i^{48} = 7i

6i^{4×12+2} + 5i^{4×8+1} – 2i^{4×3+3} + 6i^{4×12}

6i^{2} + 5i^{1} – 2i^{3} + 6i^{0}

-6+5i+2i+6

7i

Hence proved.

Rate this question :

How useful is this solution?

We strive to provide quality solutions. Please rate us to serve you better.

Related Videos

Polar & Euler Form of Complex Numbers on Argand Plane32 mins

Interactive Quiz Time - Polar & Euler Form of complex number58 mins

Practice session | Argument of complex numbers61 mins

Modulus & Conjugate of Complex Number | Ready for a Quiz?48 mins

Interactive Quiz on Quadratic Equations73 mins

Special Quiz on Argument of complex numbers56 mins

Polar & Euler Form of Complex Number on Argand Plane58 mins

Questions on Modulus & Conjugate of Complex Number62 mins

Questions Based on Polar & Euler Form of Complex Number63 mins

Interactive Quiz on Quadratic Equations-0252 mins

Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Expertsview all courses

Dedicated counsellor for each student

24X7 Doubt Resolution

Daily Report Card

Detailed Performance Evaluation

RELATED QUESTIONS :

Evaluate.

RS Aggarwal - MathematicsEvaluate

RS Aggarwal - Mathematics

If then show that

RD Sharma - MathematicsProve that i^{53} + i^{72} + i^{93} + i^{102} = 2i.

If (1 + i)z = (1 – i) then prove that z = -

RS Aggarwal - Mathematics