Answer :
Given.
We need to prove that.
We will prove this result using the principle of mathematical induction.
Step 1: When n = 1, we have
Hence, the equation is true for n = 1.
Step 2: Let us assume the equation true for some n = k, where k is a positive integer.
To prove the given equation using mathematical induction, we have to show that.
We know Ak+1 = Ak × A.
We evaluate each value of this matrix independently.
(a) The value at index (1, 1)
(b) The value at index (1, 2)
(c) The value at index (2, 1)
(d) The value at index (2, 2)
So, the matrix Ak+1 is
Hence, the equation is true for n = k + 1 under the assumption that it is true for n = k.
Therefore, by the principle of mathematical induction, the equation is true for all positive integer values of n.
Thus, for all n ϵ N.
Rate this question :


Using matrices, s
Mathematics - Board PapersIf possible, usin
Mathematics - ExemplarIf possible, usin
Mathematics - ExemplarUsing matrices, s
Mathematics - Board PapersProve that <span
Mathematics - Board PapersFind the value of
Mathematics - Board PapersIf A is a <span l
Mathematics - Board Papers