Answer :
LHS = cos 570o sin 510o + sin (-330o) cos (-390o)
We know that sin (-x) = -sin (x) and cos (-x) = +cos (x).
= cos 570o sin 510o + [-sin (330o)] cos (390o)
= cos 570o sin 510o - sin (330o) cos (390o)
= cos (90° × 6 + 30°) sin (90° × 5 + 60°) – sin (90° × 3 + 60°) cos (90° × 4 + 30°)
We know that cos is negative at 90° + θ i.e. in Q2 and when n is odd, sin → cos and cos → sin.
= -cos 30° cos 60° - [-cos 60°] cos 30°
= -cos 30° cos 60° + cos 60° cos 30°
= 0
= RHS
Hence proved.
Rate this question :
How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
view all courses
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation


RELATED QUESTIONS :
Prove that :
<
prove that :
<
Prove that:
</
Find the values o
RD Sharma - MathematicsFind the values o
RD Sharma - MathematicsFind the values o
RD Sharma - MathematicsFind the values o
RD Sharma - Mathematicsprove that :
<
Prove that:
</
Find the values o
RD Sharma - Mathematics