Answer :
Given Tn = sinnx + cosnx
LHS = 2T6 – 3T4 + 1
= 2 (sin6x + cos6x) – 3 (sin4x + cos4x) + 1
= 2 (sin2x + cos2x) (sin4x + cos4x – cos2x sin2x) – 3 (sin4x + cos4x) + 1
We know that sin2x + cos2x = 1.
= 2 (1) (sin4x + cos4x – cos2x sin2x) – 3 (sin4x + cos4x) + 1
= 2sin4x + 2cos4x – 2sin2x cos2x – 3sin4x – 3cos4x + 1
= - (sin4x + cos4x) – 2sin2x cos2x + 1
= - (sin2x + cos2x) 2 + 1
= - 1 + 1
= 0
= RHS
Hence proved.
Rate this question :
How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
view all courses
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation


RELATED QUESTIONS :
True and False<br
Mathematics - ExemplarFind the values o
RD Sharma - MathematicsProve that :
<
The value of cos<
Mathematics - ExemplarThe value of sin
Mathematics - Exemplarcos 2θ cos 2<span
Mathematics - ExemplarThe value of <spa
Mathematics - ExemplarIf <span lang="EN
Mathematics - ExemplarIf <span lang="EN
Mathematics - ExemplarFill in the blank
Mathematics - Exemplar