Answer :
LHS = sin6x + cos6x
= (sin2x)3 + (cos2x)3
We know that a3 + b3 = (a + b) (a2 + b2 – ab)
= (sin2x + cos2x) [(sin2x)2 + (cos2x)2 – sin2x cos2x]
We know that sin2x + cos2x = 1 and a2 + b2 = (a + b)2 – 2ab
= 1 × [(sin2x + cos2x)2 – 2sin2x cos2x – sin2x cos2x
= 12 - 3sin2x cos2x
= 1 - 3sin2x cos2x = RHS
Hence proved.
Rate this question :
How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
view all courses
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation


RELATED QUESTIONS :
True and False<br
Mathematics - ExemplarFind the values o
RD Sharma - MathematicsProve that :
<
The value of cos<
Mathematics - ExemplarThe value of sin
Mathematics - Exemplarcos 2θ cos 2<span
Mathematics - ExemplarThe value of <spa
Mathematics - ExemplarIf <span lang="EN
Mathematics - ExemplarIf <span lang="EN
Mathematics - ExemplarFill in the blank
Mathematics - Exemplar