Answer :

LHS = (1 + tan α tan β)2 + (tan α – tan β)2


= 1+ tan2 α tan2 β + 2 tan α tan β + tan2 α + tan2 β – 2 tan α tan β


= 1 + tan2 α tan2 β + tan2 α + tan2 β


= tan2 α (tan2 β + 1) + 1 (1 + tan2 β)


= (1 + tan2 β) (1 + tan2 α)


We know that 1 + tan2 θ = sec2 θ


= sec2 α sec2 β


= RHS


Hence proved.


Rate this question :

How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation
caricature
view all courses
RELATED QUESTIONS :

Find the values oRD Sharma - Mathematics

Prove that :
<
RD Sharma - Mathematics

The value of sin Mathematics - Exemplar

The value of <spaMathematics - Exemplar

If <span lang="ENMathematics - Exemplar

If <span lang="ENMathematics - Exemplar

Fill in the blankMathematics - Exemplar

Fill in the blankMathematics - Exemplar

If 12 sin x – 9 sRD Sharma - Mathematics

Write the intervaRD Sharma - Mathematics