Q. 463.8( 8 Votes )
If z is a complex A. |z2| > |z|2
B. |z2| = |z|2
C. |z2| < |z|2
D. |z2| ≥ |z|2
Answer :
Given z is a complex number.
Let z = x + yi
⇒ |z| = |x + yi| and |z|2 = |x + yi|2
⇒ |z|2 = x2 + y2 … (1)
Now z2 = x2 + y2i2 + 2xyi
⇒ z2 = x2 – y2 + 2xyi
So, |z|2 = x2 + y2 = |z|2
∴ |z|2 = |z2|
Rate this question :
How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
view all courses
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation


RELATED QUESTIONS :
Find the real val
RS Aggarwal - MathematicsSolve the equatio
RD Sharma - MathematicsIf |z + 1| = z +
RD Sharma - MathematicsFind the conjugat
RD Sharma - MathematicsFind principal ar
Mathematics - ExemplarIf z1
RS Aggarwal - MathematicsFind the real val
RS Aggarwal - MathematicsFind the conjugat
RS Aggarwal - MathematicsExpress each of t
RS Aggarwal - MathematicsIf z = <img
RS Aggarwal - Mathematics