Q. 195.0( 1 Vote )

# Using the principle of mathematical induction, prove each of the following for all n ϵ N:

{(41)^{n} – (14)^{n}} is divisible by 27.

Answer :

To Prove:

Let us prove this question by principle of mathematical induction (PMI) for all natural numbers

Let P(n):

For n = 1 P(n) is true since

which is multiple of 27

Assume P(k) is true for some positive integer k , ie,

=

, where m ∈ N …(1)

We will now prove that P(k + 1) is true whenever P( k ) is true

Consider ,

= [ Adding and subtracting ]

[ Using 1 ]

, where r = is a natural number

Therefore is divisible of 27

Therefore, P (k + 1) is true whenever P(k) is true

By the principle of mathematical induction, P(n) is true for all natural numbers, ie, N.

Hence proved.

Rate this question :

Prove that cos α + cos (α + β) + cos (α + 2β) + … + cos (α + (n – 1)β) for all n ϵ N

RD Sharma - MathematicsProve that sin x + sin 3x + … + sin (2n – 1) x for all

nϵN.

RD Sharma - MathematicsProve the following by the principle of mathematical induction:

1.2 + 2.3 + 3.4 + … + n(n + 1)

RD Sharma - MathematicsProve the following by the principle of mathematical induction:

1.3 + 2.4 + 3.5 + … + n . (n + 2)

RD Sharma - MathematicsProve the following by the principle of mathematical induction:

RD Sharma - Mathematics

Prove the following by the principle of mathematical induction:

1^{2} + 3^{2} + 5^{2} + … + (2n – 1)^{2}

Prove the following by the principle of mathematical induction:

a + ar + ar^{2} + … + ar^{n – 1}

Prove the following by the principle of mathematical induction:

2 + 5 + 8 + 11 + … + (3n – 1) = 1/2 n(3n + 1)

RD Sharma - MathematicsProve the following by the principle of mathematical induction:

1.3 + 3.5 + 5.7 + … + (2n – 1) (2n + 1)

RD Sharma - MathematicsProve that for all natural

numbers, n ≥ 2.

RD Sharma - Mathematics