# If then show that |3A| = 27|A|

We know that a determinant of a 3 x 3 matrix is calculated as

= 1[1(4) - 2(0)] – 0 + 1[0-0]

= 1[4 - 0] – 0 + 0

= 4

|A|= 4

LHS: |3A|

= 3[3(12) - 0(6)] – 0 + 3[0 – 0]

= 3(36) – 0 + 0

= 108

|3A| = 108 ----LHS

RHS: 27|A|

27|A| = 27(4)

= 108

27|A| = 108 ----RHS

LHS=RHS

Hence proved.

Rate this question :

How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Related Videos
Determinants of Matrices of different order59 mins
Determining a determinant63 mins
Types of Matrices & Properties51 mins
Interactive Quiz on Matrices and Determinants41 mins
Triangular Matrices & operations on matrices58 mins
Interactive Quiz on Properties of Determinants43 mins
Lecture on Product of Determinants58 mins
Test Yourself, Properties of Determinants30 mins
Interactive Quiz on Matrices & Determinants48 mins
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation
view all courses