Answer :
Given
Option (A):
= 0 – 0 + (a – b) [2a (a + c) – 0 (a + b)]
= (a – b) [2a2 + 2ac – 0]
= (a – b) (2a2 + 2ac) ≠ 0
Option (B):
= 0 – (b - a) [(b + a) (0) – (b – c) (2b)] + 0
= - (b – a) [0 - 2b2 + 2bc]
= (a – b) (2b2 – 2bc) ≠ 0
Option (C):
= 0 + a [a (0) – (-bc)] – b [ac – b (0)]
= a [bc] – b [ac]
= abc – abc = 0
Option (D):
= 0 – (1 - a) [(1 + a) (0) – (1 – c) (1 + b)] + (1 – b) [ (1 + a) (1 + c) – 0 (1 + b)]
= - (1 – a) [- (1 – c) (1 + b)] + (1 – b) [(1 + a) (1 + c)]
= (1 – a) (1 – c) (1 + b) + (1 – b) (1 + a) (1 + c) ≠ 0
Hence, option (C) satisfies.
Rate this question :
How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
view all courses
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation


RELATED QUESTIONS :
Three schools A,
Mathematics - Board PapersUsing properties
Mathematics - Board PapersTwo schools A and
Mathematics - Board PapersState True or Fal
Mathematics - Exemplar