Answer :

Given: a1, a2…, ar are in G.P

We know that, ar+1 = AR(r+1)-1 = ARr …(i)


[an = arn-1, where a = first term and r = common ratio]


where A = First term of given G.P


and R = common ratio of G.P


…[from(i)]


Taking ARr, ARr+6 and ARr+10 common from R1, R2 and R3 respectively, we get



If any two columns (or rows) of a determinant are identical (all corresponding elements are same), then the value of determinant is zero.


Here, R1 and R2 are identical.



Hence Proved


Rate this question :

How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation
caricature
view all courses
RELATED QUESTIONS :

Using properties Mathematics - Board Papers

Using properties Mathematics - Board Papers

Using properties Mathematics - Board Papers

Prove the followiMathematics - Board Papers