Answer :

Given that, the probability of a shooter hitting a target is 3/4.


Let p be the probability of hitting a target and q be the probability of not hitting a target.


Then,


But, we know p + q = 1


q= 1 – p





Let the shooter shoot n times in total.


Let X be a random variable representing the number of times the shooter hits the target out of total n times.


Then, the probability of hitting the target r times out of total n times is given by Binomial distribution as,


P (X = r) = nCrprqn-r


Substitute the value of p and q in the above formula, we get


…(i)


We need to find the minimum number of times the shooter must fire so that the probability of hitting the target at least once is more than 0.99.


It can be represented as,


P(hitting the target atleast once) > 0.99


P (X ≥ 1) > 0.99


1 – P (X < 1) > 0.99


1 – P (X = 0) > 0.99


Put r = 0 in equation (i) and then substitute in the above equation, we have










4n > 100


We need to find the minimum value of n to satisfy this inequality.


Take n = 0.


40 > 100


1 > 100


But 1 100.


Take n = 1.


41 > 100


4 > 100


But 4 100.


Take n = 2.


42 > 100


16 > 100


But 16 100.


Take n = 3.


43> 100


64 > 100


But 64 100.


Take n = 4.


44 > 100


256 > 100


It is true.


Hence, the minimum value of n to satisfy the inequality is 4.


, the shooter must fire 4 times.


Rate this question :

How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation
caricature
view all courses
RELATED QUESTIONS :

A box has 100 penMathematics - Exemplar

State True or FalMathematics - Exemplar

A random variableMathematics - Board Papers

How many times muMathematics - Board Papers

A card from a pacMathematics - Board Papers

An experiment sucMathematics - Board Papers

A bag A contains Mathematics - Board Papers

On a multiple choMathematics - Board Papers

Mark the correct RD Sharma - Volume 2