Answer :

When we toss a coin three times we have the following possibilities:


{HHH,HHT,HTH,THH,HTT,THT,TTH,TTT}


Let X be a random variable representing some heads in 3 tosses of a coin.


The probability of getting a head and probability of getting a tail are independent events and P(GETTING A TAIL) = P(GETTING A HEAD) = 1/2


P(Head in the first toss) and P(Head in the second toss) and P(head in the third toss) can be given by their products.


Note: P(AՈB) = P(A)P(B) where A and B are independent events.


Thus,


P(X = 0) = P(TTT) = P(T)P(T)P(T) = 1/2 x 1/2 x 1/2 = 1/8


P(X = 1) = P(HTT or THT or TTH) = P(HTT)+P(THT)+P(TTH)


= P(H)P(T)P(T)+ P(T)P(H)P(T)+ P(T)P(T)P(H)


= 1/2 x 1/2 x 1/2 + 1/2 x 1/2 x 1/2 + 1/2 x 1/2 x 1/2


= 3/8


P(X = 2) = P(HHT or HTH or THH) = P(HHT)+P(HTH)+P(THH)


= P(H)P(H)P(T)+ P(H)P(T)P(H)+ P(T)P(H)P(H)


= 1/2 x 1/2 x 1/2 + 1/2 x 1/2 x 1/2 + 1/2 x 1/2 x 1/2


= 3/8


P(X = 3) = P(HHH) = P(H)P(H)P(H) = 1/2 x 1/2 x 1/2 = 1/8


Now we have pi and xi.


As


Thus, ∑(pi) = 1


Now we are ready to write the probability distribution for X:-


The following table gives probability distribution:



Rate this question :

How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation
caricature
view all courses
RELATED QUESTIONS :

An urn contains 3Mathematics - Board Papers

Two cards are draMathematics - Board Papers

There are three cMathematics - Board Papers

Three numbers areMathematics - Board Papers

Let <span lang="EMathematics - Board Papers

Which of the follRD Sharma - Volume 2

Which of the follRD Sharma - Volume 2

A random variableRD Sharma - Volume 2