Q. 125.0( 2 Votes )

A firm manufactures two products A and B. Each product is processed on two machines M1 and M2. Product A requires 4 minutes of processing time on M1 and 8 min. on M2; product B requires 4 minutes on M1 and 4 min. on M2. The machine M1 is available for not more than 8 hrs 20 min. while machine M2 is available for 10 hrs. during any working day. The products A and B are sold at a profit of ₹ 3 and ₹ 4 respectively.Formulate the problem as a linear programming problem and find how many products of each type should be produced by the firm each day in order to get maximum profit.

Answer :

Let required production of product A and B be x and y respectively.


Since profit on each product A and B are Rs. 3 and Rs. 4 respectively. So, profits on x number of type A and y number of type B are 3x and 4y respectively.


Let Z denotes total output daily, so,


Z = 3x + 4y


Since, each A and B requires 4 minutes each on machine . So, x of type A and y of type B require 4x and 4y minutes respectively. But,


Total time available on machine is 8 hours 20 minutes = 500 minutes.


So,


4x + 4y 500


x + y 125 {First Constraint}


Since, each A and B requires 8 minutes and 4 minutes on machine respectively. So, x of type A and y of type B require 8x and 4y minutes respectively. But,


Total time available on machine is 10 hours = 600 minutes.


So,


8x + 4y 600


2x + y 150 {Second Constraint}


Hence mathematical formulation of the given LPP is,


Max Z = 3x + 4y


Subject to constraints,


x + y 125


2x + y 150


x,y 0 [Since production of A and B can not be less than zero]


Region x + y 125: line x + y = 125 meets the axes at A(125,0), B(0,125) respectively.


Region containing the origin represents x + y 125 as origin satisfies x + y 125.


Region 2x + y 150: line 2x + y = 150 meets the axes at C(75,0), D(0,150) respectively.


Region containing the origin represents 2x + y 150 as origin satisfies 2x + y 150.


Region x,y 0: it represents the first quadrant.


12.jpg


The corner points are O(0,0), B(0,125), E(25,100), and C(75,0).


The vaues of Z at these corner points are as follows:



The maximum value of Z is 500 which is attained at B(0,125).


Thus, the maximum profit is Rs 500 obtained when no units of product A and 125 units of product B are manufactured.


Rate this question :

How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Related Videos
Range of Quadratic/quadratic & linear/Linear functions45 mins
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation
view all courses
RELATED QUESTIONS :