Q. 8 B3.9( 38 Votes )

<span lang="EN-US

Answer :

(A – A’) is a skew symmetric matrix.

.


subtracting A’ from A, we get,




Explanation: Now to show that the matrix obtained i.e. (A + A’) is skew symmetric we need to calculate its transpose and prove that the matrix (A + A’) is equal to the negative of its transpose are equal. This means that (A + A’) = -(A + A’)’.



We can rewrite above equation as



Also, (A – A’)’ = (-1) × (A – A’) (from equation 1)


(A – A’)’ = -(A – A’), hence we can say that Matrix A is a skew symmetric matrix.


Hence proved.


Rate this question :

How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation
caricature
view all courses
RELATED QUESTIONS :

<span lang="EN-USMathematics - Exemplar

<span lang="EN-USMathematics - Exemplar

<span lang="EN-USMathematics - Exemplar

Given <img Mathematics - Exemplar

<span lang="EN-USMathematics - Exemplar

<span lang="EN-USMathematics - Exemplar

<span lang="EN-USMathematics - Exemplar

For the followingMathematics - Board Papers

<span lang="EN-USMathematics - Exemplar

Use <span lang="EMathematics - Board Papers