Q. 785.0( 1 Vote )

# Fill in the blank

Answer :

(i) AB – BA is a Skew Symmetric matrix

Given A’=A and B’=B

(AB-BA)’=(AB)’-(BA)’

(AB)’-(BA)’=B’A’-A’B’

B’A’-A’B’=BA-AB=-(AB-BA)

(AB-BA)’=-(AB-BA) (skew symmetric matrix)

Eg. Let A = B= AB= and BA= AB-BA= (AB-BA)’= -(AB-BA)= (ii) BA – 2AB is a Neither Symmetric nor Skew Symmetric matrix

Given A’=A and B’=B

(BA-2AB)’=(BA)’-(2AB)’

(BA)’-(2AB)’=A’B’-2B’A’

A’B’-2B’A’=AB-2BA=-(2BA-AB)

(BA-2AB)’=-(2BA-AB)

Eg. Let A = B= AB= and BA= BA-2AB= Rate this question :

How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation view all courses RELATED QUESTIONS :

<span lang="EN-USMathematics - Exemplar

<span lang="EN-USMathematics - Exemplar

Fill in the blankMathematics - Exemplar

Fill in the blankMathematics - Exemplar

Fill in the blankMathematics - Exemplar

If A, B are squarMathematics - Exemplar

Fill in the blankMathematics - Exemplar

Fill in the blankMathematics - Exemplar

Express the folloMathematics - Board Papers

Fill in the blankMathematics - Exemplar