Answer :
Given,
a cos θ + b sin θ = m …(1)
a sin θ – b cos θ = n …(2)
Squaring and adding equation 1 and 2, we get –
(a cos θ + b sin θ)2 + (a sin θ – b cos θ)2 = m2 + n2
⇒ a2cos2θ + b2sin2θ + 2ab sin θ cos θ + a2sin2θ + b2cos2θ - 2ab sin θ cos θ = m2 + n2
⇒ a2cos2θ + b2sin2θ + a2sin2θ + b2cos2θ = m2 + n2
⇒ a2(sin2θ + cos2θ) + b2(sin2θ + cos2θ) = m2 + n2
Using: sin2θ + cos2θ = 1, we get –
⇒ a2 + b2 = m2 + n2
Rate this question :
How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
view all courses
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation


RELATED QUESTIONS :
True and False<br
Mathematics - ExemplarFind the values o
RD Sharma - MathematicsProve that :
<
The value of cos<
Mathematics - ExemplarThe value of sin
Mathematics - Exemplarcos 2θ cos 2<span
Mathematics - ExemplarThe value of <spa
Mathematics - ExemplarIf <span lang="EN
Mathematics - ExemplarIf <span lang="EN
Mathematics - ExemplarFill in the blank
Mathematics - Exemplar