Answer :
Given that, cos 2θ cos 2ϕ + sin2(θ–ϕ) – sin2(θ + ϕ)
= cos 2θ cos 2ϕ + sin(θ–ϕ+ θ + ϕ)sin(θ–ϕ- θ – ϕ)
[∵sin2A – sin2B = sin (A + B) sin (A – B)]
= cos 2θ cos 2ϕ + sin 2θ. sin(- 2ϕ)
= cos 2θ cos 2ϕ - sin 2θ. Sin 2ϕ [∵ sin(-θ) = -sin θ]
= cos 2(θ + ϕ) [∵ cos x cos y – sin x sin y = cos(x + y)]
Rate this question :
How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
view all courses
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation


RELATED QUESTIONS :
True and False<br
Mathematics - ExemplarFind the values o
RD Sharma - MathematicsProve that :
<
The value of cos<
Mathematics - ExemplarThe value of sin
Mathematics - Exemplarcos 2θ cos 2<span
Mathematics - ExemplarThe value of <spa
Mathematics - ExemplarIf <span lang="EN
Mathematics - ExemplarIf <span lang="EN
Mathematics - ExemplarFill in the blank
Mathematics - Exemplar