Answer :

We know that solution of a plane passing through (x1,y1,z1) is given as -


a(x – x1) + b(y – y1) + c(z – z1) = 0


The required plane passes through (1, – 1,2), so the equation of plane is


a(x – 1) + b(y + 1) + c(z – 2) = 0


ax + by + cz = a – b + 2c …… (1)


Now, the required plane is also perpendicular to the planes,


2x + 3y – 2z = 5 and x + 2y – 3z = 8


We know that planes a1x + b1y + c1z + d1 = 0 and a2x + b2y + c2z + d2 = 0 are at right angles if,


a1a2 + b1b2 + c1c2 = 0 …… (a)


Using (a) we have,


2a + 3b – 2c = 0 …… (b)


a + 2b – 3c = 0 …… (c)


Solving (b) and (c) we get,





a = – 5λ, b = 4λ, c = λ


Putting values of a,b,c in equation (1) we get,


(– )x + (4λ)y + (λ)z = – 5λ – 4λ + 2λ


– 5λx + 4λy + λz = – 7λ


Dividing both sides by (– λ) we get


5x – 4y – z = 7


So, the equation of the required planes is 5x - 4y – z = 7


Rate this question :

How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation
caricature
view all courses
RELATED QUESTIONS :

Find the equationMathematics - Board Papers

Find the coordinaMathematics - Board Papers

Find the distanceMathematics - Board Papers

Find the coordinaMathematics - Board Papers

Find the CartesiaMathematics - Board Papers

Find the coordinaMathematics - Board Papers