Answer :
Given that we need to find the equation of the circle passing through the points (5,7), (8,1) and (1,3).
We know that the standard form of the equation of a circle is given by:
⇒ x2 + y2 + 2ax + 2by + c = 0 ..... (1)
Substituting (5,7) in (1), we get
⇒ 52 + 72 + 2a(5) + 2b(7) + c = 0
⇒ 25 + 49 + 10a + 14b + c = 0
⇒ 10a + 14b + c + 74 = 0 ..... (2)
Substituting (8,1) in (1), we get
⇒ 82 + 12 + 2a(8) + 2b(1) + c = 0
⇒ 64 + 1 + 16a + 2b + c = 0
⇒ 16a + 2b + c + 65 = 0 ..... (3)
Substituting (1,3) in (1), we get
⇒ 12 + 32 + 2a(1) + 2b(3) + c = 0
⇒ 1 + 9 + 2a + 6b + c = 0
⇒ 2a + 6b + c + 10 = 0 ..... (4)
Solving (2), (3), (4) we get
⇒ .
Substituting these values in (1), we get
⇒
⇒
⇒ 3x2 + 3y2 - 29x - 19y + 56 = 0
∴ The equation of the circle is 3x2 + 3y2 - 29x - 19y + 56 = 0.
Rate this question :


The equation of t
RD Sharma - MathematicsFind the eq
RD Sharma - MathematicsFind the eq
RD Sharma - MathematicsShow that t
RD Sharma - MathematicsIf the circle x<s
RD Sharma - MathematicsFind the eq
RD Sharma - MathematicsFind the eq
RD Sharma - MathematicsThe circle x
RD Sharma - MathematicsIf the circles x<
RD Sharma - MathematicsIf the centroid o
RD Sharma - Mathematics