Answer :
Let the original numbers be
a, a + d, and a + 2d
According to the question –
a + a + d + a + 2d = 15
⇒ 3a + 3d = 15 or a + d = 5
⇒ d = 5 – a
After the addition, the three numbers are:
a + 1, a + d + 3, and a + 2d + 9
they are now in GP, that is –
⇒
⇒ (a + d + 3)2 = (a + 2d + 9)(a + 1)
⇒ a2 + d2 + 9 + 2ad + 6d + 6a = a2 + a + 2da + 2d + 9a + 9
⇒ (5 – a)2 – 4a + 4(5 – a) = 0
⇒ 25 + a2 – 10a – 4a + 20 – 4a = 0
⇒ a2 – 18a + 45 = 0
⇒ a2 – 15a – 3a + 45 = 0
⇒ a(a – 15) – 3(a – 15) = 0
⇒ a = 3 or a = 15
∴ d = 5 – a
d = 5 – 3 or d = 5 – 15
d = 2 or – 10
∴ The numbers are 3,5,7 or 15,5, – 5
Rate this question :


If AM and GM of t
RD Sharma - MathematicsIf AM and GM of r
RD Sharma - MathematicsWrite the quadrat
RS Aggarwal - Mathematics<span lang="EN-US
RD Sharma - MathematicsFind the two numb
RD Sharma - MathematicsInsert 5 geometri
RD Sharma - MathematicsIf a, b, c are in
RD Sharma - MathematicsProve that the pr
RD Sharma - MathematicsConstruct a quadr
RD Sharma - MathematicsIf a, b, c are in
RD Sharma - Mathematics