Q. 75.0( 2 Votes )

# Evaluate the following Integrals:

Answer :

Given Definite Integral can be written as:

(1)

Let us assume y = x^{2}

Differentiating w.r.t x on both sides we get,

⇒ d(y) = d(x^{2})

⇒ dy = 2xdx

……(2)

Upper limit for the Definite Integral:

⇒ x = 1 ⇒ y = 1^{2}

⇒ y = 1 ……(3)

Lower limit for the Definite Integral:

⇒ x = 0 ⇒ y = 0^{2}

⇒ y = 0 ……(4)

Substituting (2),(3),(4) in the eq(1), we get,

We know that: ∫ e^{x}dx = e^{x}+c

We know that:

[here f’(x) is derivative of f(x))

Rate this question :

Evaluate the following:

(Hint: Divide Numerator and Denominator by cos^{4}x)

If find the value of a.

Mathematics - Board PapersEvaluate the following Integrals:

RD Sharma - Volume 2

Evaluate the following:

Mathematics - Exemplar

Evaluate the following Integrals:

RD Sharma - Volume 2

Evaluate the following Integrals:

RD Sharma - Volume 2

Evaluate the following Integrals:

RD Sharma - Volume 2

Evaluate :

Mathematics - Board PapersEvaluate the following Integrals:

RD Sharma - Volume 2