Answer :

TIP: One – One Function: – A function is said to be a one – one functions or an injection if different elements of A have different images in B.


So, is One – One function


a≠b


f(a)≠f(b) for all


f(a) = f(b)


a = b for all


Onto Function: – A function is said to be a onto function or surjection if every element of A i.e, if f(A) = B or range of f is the co – domain of f.


So, is Surjection iff for each , there exists such that f(a) = b


Now, As given,


f2 = {(2, a), (3, b), (4, c)}


A = {2, 3, 4}, B = {a, b, c}


Thus we can see that


Check for Injectivity:


Every element of A has a different image from B


Hence f is a One – One function


Check for Surjectivity:


Also, each element of B is an image of some element of A


Hence f is Onto.


Rate this question :

How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation
caricature
view all courses
RELATED QUESTIONS :

Fill in theMathematics - Exemplar

Let f : [2, ∞) <sMathematics - Exemplar

Let f : N Mathematics - Exemplar

Fill in theMathematics - Exemplar

Let f :R →<Mathematics - Exemplar

Let f : [0, 1] <sMathematics - Exemplar

Which of the follMathematics - Exemplar