# In Fig. 17.29, su

In parallelogram BDEF

BD = EF and BF = DE ……..(i) [In a parallelogram opposite sides are equal]

In parallelogram DCEF

DC = EF and DF = CE ……..(ii) [In a parallelogram opposite sides are equal]

In parallelogram AFDE

AF = DE and DF = AE ……..(ii) [In a parallelogram opposite sides are equal]

Therefore DE = AF =BF ……..(iv)

Similarly: DF = CE = AE …….(v)

But, DE = DF ……given

From equations (iv) and (v), we get

AF + BF = AE + EC

AB = AC

Therefore ΔABC is an isosceles triangle.

Rate this question :

How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation
view all courses
RELATED QUESTIONS :

The angle betweenRD Sharma - Mathematics

A playground is iNCERT - Mathematics Exemplar

Diagonals of a paRD Sharma - Mathematics

The perimeter of RD Sharma - Mathematics