Q. 1

# If A + B + C = π, prove thatsin 2A + sin 2B – sin 2C = 4cos A cos B sin C

= sin 2A + sin 2B – sin 2C

= 2 sin ( B + C ) cos A + 2 sin ( A + C ) cos B - 2 sin ( A + B ) cos C
using formula,
sin (A + B) = sin A cos B + cos A sin B
= sin 2A + sin 2B - sin 2C

Using formula

sin2A = 2sinAcosA
= 2sinAcosA + 2sinBcosB - 2sinCcosC

since A + B + C = π And sin(π – A) = sinA
= 2sin(B + C)cos A + 2sin(A + C)cosB - 2sin(A + B)cosC
= 2 ( sin B cos C + cos B sin C ) cos A + 2(sinAcosC + cosAsinC)cosB - 2(sinAcosB + cosAsinB )cosC
= 2cosAsinBcosC + 2cosAcosBsinC + 2sinAcosBcosC + 2cosAcosBsinC– 2sinAcosBcosC – 2cosAsinBcosC
= 2cosAcosBsinC + 2cosAcosBsinC
= 4cosAcosBsinC

= R.H.S

Rate this question :

How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Related Videos  Conditional Identities31 mins  Incentre | Mastering important conceptsFREE Class  Orthocentre and escribed circles48 mins  Circumcentre & its properties54 mins  Solution of Triangles | Test Yourself | QuizFREE Class  Importance of Sine rule and cosine rule47 mins  Quiz on sine rule, cosine rule and half angle formula54 mins  Stewart's Theorem46 mins  Interactive Quiz on Half angle formula, circumcircle and incircle48 mins  Centroid | Mastering important conceptsFREE Class
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation view all courses 