Q. 1 C4.0( 2 Votes )

# Find the number o

Since we know, Permutation of n objects taking r at a time is nPr,and permutation of n objects taking all at a time is n!

And, we also know Permutation of n objects taking all at a time having p objects of the same type, q objects of another type, r objects of another type is . i.e. the, number of repeated objects of same type are in denominator multiplication with factorial.

Given, the word ARRANGE. It has 7 letters, and it has 2 repeated letters ‘A’, ‘R.’ Of which, the letter A is repeated twice, and the letter R is also repeated twice. All other letters are distinct.

The problem can now be rephrased as to find a total number of permutations of 7 objects (A, R, R, A, N, G, E) of which two objects are of same type (A, A), and two objects are of another type (R, R).

Total number of such permutations

= 1260

Hence, a total number of permutations of the word ARRANGE is 1260.

Rate this question :

How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation
view all courses
RELATED QUESTIONS :

Four letters E, KRD Sharma - Mathematics

. There are 6 iteRD Sharma - Mathematics

How many permutatRD Sharma - Mathematics

Find the total nuRD Sharma - Mathematics

In how many ways RD Sharma - Mathematics

From among the 36RD Sharma - Mathematics

How many differenRD Sharma - Mathematics

How many three-diRD Sharma - Mathematics

In how many ways RD Sharma - Mathematics

How many three-diRD Sharma - Mathematics