Q. 83.8( 10 Votes )
Prove that
</p
Answer :
(i) cos150
Sin150
Cos150 - sin150
(ii)cot105° - tan105° = cot(180° - 75°) - tan(180° - 75°)
(II quadrant tanx is negative and cotx as well)
= - cot75° - ( - tan75°)
= tan75° - cot75°
Tan75° =
(using sin(90° - x) = - cosx and cos(90° - x) = sinx)
Cot75° =
Cot105° - tan105° =
(iii)
(II quadrant tanx negative)
- tan45° = - 1
Rate this question :
How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
view all courses
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation


RELATED QUESTIONS :
True and False<br
Mathematics - ExemplarFind the values o
RD Sharma - MathematicsProve that :
<
The value of cos<
Mathematics - ExemplarThe value of sin
Mathematics - Exemplarcos 2θ cos 2<span
Mathematics - ExemplarThe value of <spa
Mathematics - ExemplarIf <span lang="EN
Mathematics - ExemplarIf <span lang="EN
Mathematics - ExemplarFill in the blank
Mathematics - Exemplar