Q. 73.9( 15 Votes )
Prove that
(i) 
(ii) 
(iii) tan 150 + cot 150 = 4
Answer :
(i)sin75° = sin(90° - 15°) .…….(using sin(A - B) = sinAcosB - cosAsinB)
= sin90°cos15° - cos90°sin15°
= 1.cos15° - 0.sin15°
= cos15°
Cos15° = cos(45° - 30°) …………(using cos(A - B) = cosAcosB + sinAsinB)
= cos45°.cos30° + sin45°.sin30°
(ii)(using sin(180° - x) = sinx)
(using cos(180° - x) = - cosx)
=
(iii)tan15° + cot15° =
First, we will calculate tan15°,
………………….(1)
Putting in eq(1),
Rate this question :






















True and False
If then tan 2A = tan B.
Find the values of the other five trigonometric functions in each of the following:
tan in quadrant III
Prove that :
where
The value of cos2 48°– sin2 12° is
Mathematics - ExemplarThe value of sin 50°– sin 70° + sin 10° is equal to
Mathematics - Exemplarcos 2θ cos 2ϕ + sin2(θ–ϕ) – sin2(θ + ϕ) is equal to
Mathematics - ExemplarThe value of is
If then the value of (1+ tanα) (1 + tanβ) is
If then tan (2A + B) is equal to
Fill in the blanks
If then the numerical value of k is _________.