Answer :

Untitled3.jpg


Let BC be the tower and CD be the flagstaff. Join C, A and D, A and A, B. We get two right-angled triangles ABC and BAD which are right-angled at B. By the problem, it is clear that BAC = 45° and BAD = 60°. We use trigonometric ratio tan for both the triangles using BC as height and AB as a base(for ∆ABC) and BD as height and AB as a base(for ∆ABD) to find the height of the flagstaff CD.


Let BC be x.


In ∆ABC we have,



or,



or,


x = 120


So, we get BC = 120m. In ∆ABD,



or,



or,



or,



So, height of the flagstaff = DC = 87.84m.


Rate this question :

How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation
caricature
view all courses