# A cylindrical bucket, 32 cm high and 18 cm of radius of the base, is filled with sand. This bucket is emptied on the ground and a conical heap of sand is formed. If the height of the conical heap is 24 cm, find the radius and the slant height of the heap.

Let the radius of the heap be r and the slant height h,

So, we have

Height of the cylindrical bucket = 32cm

Radius of the base of cylindrical bucket = 18cm

Height of the conical heap = 24cm

Volume of cylinder = volume of cone

πr2h =

r2 = 18 × 8 × 4

r = 18 × 2

r = 36cm

slant height l =

l = 43.27cm

Rate this question :

How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Related Videos
Surface Area of Right Circular Cylinder52 mins
Smart Revision | Surface Area and Volume of Cube40 mins
Smart Revision | Surface Area and Volume of Cuboid48 mins
Surface Area of Right Circular Cylinder49 mins
Surface Area of Cube and Cuboid49 mins
Smart Revision | Surface Area and Volume of Cylinder51 mins
Surface Area and Volume of Spheres40 mins
Surface Area and Volume of Cone24 mins
Surface Area and Volume of Right Circular Cylinders42 mins
Quiz | Mensuration42 mins
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation
view all courses