Answer :

Given:

Let H and E denote the number of students who read Hindi and English newspaper respectively.

Hence, P(H) = Probability of students who read Hindi newspaper=

P(E) = Probability of students who read English newspaper =

P (H ∩ E) = Probability of students who read Hindi and English both newspaper =

(a) Find the probability that she reads neither Hindi nor English newspapers.

P(neither H nor E)

P(neither H nor E) = P(H^{’} ∩ E^{’})

As, { H^{’} ∩ E^{’} =(H ∪ E)^{’}}

⇒ P(neither A nor B) = P ((H ∪ E)^{’})

= 1 - P (H ∪ E)

= 1- [P(H) + P(E) - P (H ∩ E)]

(b) If she reads Hindi newspaper, find the probability that she reads English newspaper.

P (E|H) = hindi newspaper reading has already occurred and the probability that she reads English newspaper is to find.

As we know

⇒

⇒ P (E|H) =

(c) If she reads English newspaper, find the probability that she reads Hindi newspaper.

P (H|E) = English newspaper reading has already occurred and the probability that she reads Hindi newspaper is to find.

As we know

⇒

⇒ P (H|E) =

Rate this question :

Coloured balls arMathematics - Board Papers

If A and B are twMathematics - Board Papers

State True or FalMathematics - Exemplar

State True or FalMathematics - Exemplar

State True or FalMathematics - Exemplar

State True or FalMathematics - Exemplar

State True or FalMathematics - Exemplar

Prove that if E aMathematics - Board Papers

State True or FalMathematics - Exemplar