Q. 24.5( 52 Votes )

# Use the given algebraic expression to complete the table of number patterns.

Answer :

**(i)**Expression = 2n - 1

100^{th} term (i.e. n = 100)

= 2(100) - 1

= 200 - 1

= 199

**(ii)**Expression = 3n + 2

5^{th} term( i.e. n = 5)

= 3(5) + 2

= 15 + 2

= 17

10^{th} terms(i.e.. n =10)

=3(10) + 2

=30 + 2

= 32

100^{th} term( i.e. n = 100)

=3(100) + 2

= 300 + 2

= 302

**(iii)**Expression = 4n + 1

5^{th} term( i.e. n = 5)

= 4(5) + 1

= 20 + 1

= 21

10^{th} terms(i.e.. n =10)

=4(10) + 1

=40 + 1

= 41

100^{th} term( i.e. n = 100)

=4(100) + 1

= 400 + 1

= 401

**(iv)**Expression = 7n + 20

5^{th} term( i.e. n = 5)

= 7(5) + 20

= 35 + 20

= 55

10^{th} terms(i.e.. n =10)

=7(10) + 20

=70 + 20

= 90

100^{th} term( i.e. n = 100)

=7(100) + 20

= 700 + 20

= 720

**(v)**Expression = n^{2} + 1

5^{th} term( i.e. n = 5)

= (5)^{2} + 1

= 25 + 1

= 26

10^{th} terms(i.e.. n =10)

=(10)^{2} + 1

=100 + 1

= 101

So the Table is

Rate this question :

Write the coefficient of x2 in the following:

(i) x^{2} – x + 4

(ii) x^{3} – 2x^{2} + 3x + 1

(iii) 1 + 2x + 3x^{2} + 4x^{3}

(iv) y + y^{2}x + y^{3}x^{2} + y^{4}x^{3}

Find the numerical coefficient of each of the terms:

(i) x^{3}y^{2}z, xy^{2}z^{3}, –3xy^{2}z^{3}, 5x^{3}y^{2}z, –7x^{2}y^{2}z^{2}

(ii) 10xyz, –7xy^{2}z, –9xyz, 2xy^{2}z, 2x^{2}y^{2}z^{2}

State whether the statements given are True or False.

In like terms, the numerical coefficients should also be the same.

NCERT - Exemplar MathematicsState whether the statements given are True or False.

5a and 5b are unlike terms.

NCERT - Exemplar MathematicsState whether the statements given are True or False.

4p is the numerical coefficient of q^{2} in – 4pq^{2}.

State whether the statements given are True or False.

In like terms, variables and their powers are the same.

NCERT - Exemplar MathematicsTranslate each of the following algebraic expressions

NCERT - Exemplar Mathematics