Answer :
A = √ s(s-a)(s-b)(s-c)
If the area is an integer
Then [s(s-a)(s-b)(s-c)] should be proper square
If s = Then s =
= 24
Hence ;
A = √ 24(24-a)(24-b)(24-c)
If side of triangle are
a = 21 and b + c = 27
let c be smallest side
then b = 27-c
∴ √ 24(24-21)(24-27 + c)(24-c)
⇒ √ 24 × 3 × (c-3)(24-c)
⇒ √ 2 × 2 × 2 × 3 × 3 × (c-3)(24-c)
⇒ 2 × 3√2(c-3)(24-c)
⇒ 6√2(c-3)(24-c)
∴ the value of [2(c-3)(24-c)] must be a perfect square for area to be a integer
For getting square 2(c-3) should be equal to (24-c)
2(c-3) = (24-c)
2c-6 = 24-c
2c + c = 24 + 6
3c = 10
c = 10; b = 27-c = 27-10 = 17
Hence the size of smallest size is 10.
Rate this question :












<span lang="EN-US
AP - Mathematics<span lang="EN-US
AP - Mathematics<span lang="EN-US
AP - Mathematics<span lang="EN-US
AP - Mathematics<span lang="EN-US
AP - Mathematics<span lang="EN-US
AP - Mathematics<span lang="EN-US
AP - Mathematics<span lang="EN-US
AP - Mathematics<span lang="EN-US
AP - Mathematics<span lang="EN-US
AP - Mathematics