Answer :
In expression a4 – (b + c)4
Both terms are perfect square
⇒ a4 = a2 × a2
⇒ (b + c)4 = (b + c)2 × (b + c)2
∴ a4 – (b + c)4 Seems to be in identity a2-b2 = (a + b)(a-b)
Where a = a2 and b = (b + c)2;
a4 – (b + c)4 = (a2 – (b + c)2)( a2 + (b + c)2),
∴ a2 – (b + c)2 Seems to be in identity a2-b2 = (a + b)(a-b)
Where a = a and b = (b + c);
a2 – (b + c)2 = (a– (b + c))( a+ (b + c)),
⇒ a4 – (b + c)4 = (a– (b + c))( a+ (b + c)), ( a2 + (b + c)2)
⇒ a4 – (b + c)4 = (a–b–c)(a + b + c), (a2 + b2 + c2 + 2bc)
Hence the factors of a4 – (b + c)4 are (a–b–c),(a + b + c),( a2 + b2 + c2 + 2bc)
Rate this question :


<span lang="EN-US
AP - Mathematics<span lang="EN-US
AP - Mathematics<span lang="EN-US
AP - Mathematics<span lang="EN-US
AP - Mathematics<span lang="EN-US
AP - Mathematics<span lang="EN-US
AP - Mathematics<span lang="EN-US
AP - Mathematics<span lang="EN-US
AP - Mathematics<span lang="EN-US
AP - Mathematics<span lang="EN-US
AP - Mathematics