Answer :


Rectangle with given perimeter.

Let us consider,

‘p’ as the fixed perimeter of the rectangle.

‘x’ and ‘y’ be the sides of the given rectangle.

Area of the rectangle, A = x × y.

Now as consider the perimeter of the rectangle,

p = 2(x +y)

p = 2x + 2y

----- (1)

Consider the area of the rectangle,

A = x × y

Substituting (1) in the area of the rectangle,

----- (2)

For finding the maximum/ minimum of given function, we can find it by differentiating it with x and then equating it to zero. This is because if the function f(x) has a maximum/minimum at a point c then f’(c) = 0.

Differentiating the equation (2) with respect to x:

[Since ]

----- (3)

To find the critical point, we need to equate equation (3) to zero.

Now to check if this critical point will determine the largest rectangle, we need to check with second differential which needs to be negative.

Consider differentiating the equation (3) with x:

[Since and ]

------ (4)

Now, consider the value of

As , so the function P is maximum at .

Now substituting in equation (1):

As the sides of the taken rectangle are equal, we can clearly say that a largest rectangle which has a given perimeter is a square.

Rate this question :

How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation
view all courses

If the sum of theMathematics - Board Papers

A metal box with Mathematics - Board Papers

Show that aRD Sharma - Volume 1

Find the local maMathematics - Board Papers

Prove that the seMathematics - Board Papers

Prove that the raMathematics - Board Papers

Prove that the leMathematics - Board Papers