Q. 14

# The perimeter of

Answer :

Given,

Perimeter of a triangle is 8 cm.

One of the sides of the triangle is 3 cm.

The area of the triangle is maximum.

Let us consider,

‘x’ and ‘y’ be the other two sides of the triangle.

Now, perimeter of the ΔABC is

8 = 3 + x + y

y = 8-3-x = 5-x

y = 5-x --- (1)

Consider the Heron’s area of the triangle, Where As perimeter = a + b+ c = 8 Now Area of the triangle is given by Now substituting (1) in the area of the triangle,    [squaring on both sides]

Z = A2 = 4(5x –x2-4) ----- (2)

For finding the maximum/ minimum of given function, we can find it by differentiating it with x and then equating it to zero. This is because if the function f(x) has a maximum/minimum at a point c then f’(c) = 0.

Differentiating the equation (2) with respect to x:  [Since ]  ------ (3)

To find the critical point, we need to equate equation (3) to zero. 20 – 8x = 0

8x = 20 Now to check if this critical point will determine the maximum area of the triangle, we need to check with second differential which needs to be negative.

Consider differentiating the equation (3) with x:  ----- (4)

[Since ]

As , so the function A is maximum at .

Now substituting in equation (1):

y = 5 – 2.5

y = 2.5

As x = y = 2.5, two sides of the triangle are equal,

Hence the given triangle is an isosceles triangle with two sides equal to 2.5 cm and the third side equal to 3cm.

Rate this question :

How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation view all courses RELATED QUESTIONS :

If the sum of theMathematics - Board Papers

A metal box with Mathematics - Board Papers

Show that aRD Sharma - Volume 1

Find the local maMathematics - Board Papers

Prove that the seMathematics - Board Papers

Prove that the raMathematics - Board Papers

Prove that the leMathematics - Board Papers