Q. 54.2( 239 Votes )
Draw a line segment AB of length 8 cm. Taking A as centre, draw a circle of radius 4 cm and taking B as centre, draw another circle of radius 3 cm. Construct tangents to each circle from the centre of the other circle.
Answer :
Step1: Draw a line PQ=8cm. taking P and Q as a center draw circle of 3cm and 4cm.
Step2: Now bisect PQ. We get midpoint of PQ be T.
Now take T as a center , draw a circle of PT radius , this will intersect the circle at point A,B,C,D. Join PB,PD,AQ,QC.
Justification:
It can be justified by prove that PB,PD are tangents of circle (whose center is P and radius is 3cm) and AQ,QC are tangents of circle (whose center is Q and radius is 4cm)
Join PA, PC, QB, QD
∠PBQ=90° (Angle is on semicircle)
BQ⊥PB
Since, BQ is radius of circle, PB has to be a tangent. Similarly PD, QA ,QC are tangents.
Rate this question :
How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
PREVIOUSDraw a pair of tangents to a circle of radius 5 cm which are inclined to each other at an angle of 60°.NEXTLet ABC be a right triangle in which AB = 6 cm, BC = 8 cm and ∠ B = 90°. BD is theperpendicular from B on AC. The circle through B, C, D is drawn. Construct the tangents from A to this circle.
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
view all courses
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation

