Answer :
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
given,
sec x cos 5x + 1 = 0, 0 < x < π/2
⇒ sec x cos 5x = -1
⇒ cos 5x = - cos x
∵ - cos x = cos (π – x)
∴ cos 5x = cos (π – x)
If cos x = cos y, implies 2nπ ± y, where n ∈ Z.
∴ 5x = 2nπ ± (π – x)
⇒ 5x = 2nπ + (π – x) or 5x = 2nπ – (π – x)
⇒ 6x = (2n+1)π or 4x = (2n-1)π
∴
But, 0 < x < π/2
∴
Rate this question :
How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
view all courses
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation


RELATED QUESTIONS :
Solve the followi
RD Sharma - Mathematics3sin2
RD Sharma - MathematicsSolve the followi
RD Sharma - MathematicsSolve : <span lan
RD Sharma - MathematicsSolve the followi
RD Sharma - MathematicsSolve : <span lan
RD Sharma - MathematicsSolve the followi
RD Sharma - MathematicsSolve the followi
RD Sharma - MathematicsFind the general
RD Sharma - MathematicsFind the general
RD Sharma - Mathematics