Q. 5 C5.0( 1 Vote )
Solve the following equations :
tan 3x + tan x = 2 tan 2x
Answer :
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
given,
tan x + tan 3x = 2tan 2x
⇒ tan x + tan 3x = tan 2x + tan 2x
⇒ tan 3x – tan 2x = tan 2x – tan x
⇒
As, tan (A - B) =
∴
⇒
⇒
∴ tan x = 0 or tan 2x = 0 or tan 3x = tan x
if tan x = tan y, implies x = nπ + y, where n ∈ Z
∴ x = nπ or 2x = mπ or 3x = kπ + x
∴
∴
Rate this question :






















Solve the following equations :
sin x – 3 sin 2x + sin 3x = cos x – 3 cos 2x + cos 3x
RD Sharma - Mathematics3sin2 x – 5 sin x cos x + 8 cos2 x = 2
RD Sharma - MathematicsSolve the following equations :
cos x + sin x = cos 2x + sin 2x
RD Sharma - MathematicsSolve :
Solve the following equations :
3 tan x + cot x = 5 cosec x
RD Sharma - MathematicsSolve the following equations :
sin x – 3 sin 2x + sin 3x = cos x – 3 cos 2x + cos 3x
RD Sharma - MathematicsSolve :
Solve the following equations :
4 sin x cos x + 2 sin x + 2 cos x + 1 = 0
RD Sharma - MathematicsSolve the following equations :
5 cos2 x + 7 sin2 x – 6 = 0
RD Sharma - MathematicsFind the general solutions of the following equations :