Q. 4 C4.5( 2 Votes )
Solve the following equations :
sin x + sin 5x = sin 3x
Answer :
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
sin x + sin 5x = sin 3x
To solve the equation we need to change its form so that we can equate the t-ratios individually.
For this we will be applying transformation formulae. While applying the
Transformation formula we need to select the terms wisely which we want
to transform.
As, sin x + sin 5x = sin 3x
∴ sin x + sin 5x – sin 3x = 0
∴ we will use sin x and sin 5x for transformation as after transformation it will give sin 3x term which can be taken common.
{∵ sin A + sin B =
⇒ -sin 3x + 2 sin
⇒ 2sin 3x cos 2x – sin 3x = 0
⇒ sin 3x ( 2cos 2x – 1) = 0
∴ either, sin 3x = 0 or 2cos 2x – 1 = 0
⇒ sin 3x = sin 0 or cos 2x = � = cos π/3
If sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
Comparing obtained equation with standard equation, we have:
3x = nπ or 2x = 2mπ ± π/3
∴ where m,n ϵ Z ..ans
Rate this question :






















Solve the following equations :
sin x – 3 sin 2x + sin 3x = cos x – 3 cos 2x + cos 3x
RD Sharma - Mathematics3sin2 x – 5 sin x cos x + 8 cos2 x = 2
RD Sharma - MathematicsSolve the following equations :
cos x + sin x = cos 2x + sin 2x
RD Sharma - MathematicsSolve :
Solve the following equations :
3 tan x + cot x = 5 cosec x
RD Sharma - MathematicsSolve the following equations :
sin x – 3 sin 2x + sin 3x = cos x – 3 cos 2x + cos 3x
RD Sharma - MathematicsSolve :
Solve the following equations :
4 sin x cos x + 2 sin x + 2 cos x + 1 = 0
RD Sharma - MathematicsSolve the following equations :
5 cos2 x + 7 sin2 x – 6 = 0
RD Sharma - MathematicsFind the general solutions of the following equations :