Answer :
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)n y, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
⇒
⇒
⇒
∴ tan x = -1 or tan x = √3
As, tan x ϵ (-∞ , ∞) so both values are valid and acceptable.
⇒ tan x = tan (-π/4) or tan x = tan (π/3)
If tan x = tan y, implies x = nπ + y, where n ∈ Z.
Clearly by comparing standard form with obtained equation we have
y = -π/4 or y = π/3
∴ or
Hence,
,where m,n ϵ Z
Rate this question :
How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
view all courses
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation


RELATED QUESTIONS :
Solve the followi
RD Sharma - Mathematics3sin2
RD Sharma - MathematicsSolve the followi
RD Sharma - MathematicsSolve : <span lan
RD Sharma - MathematicsSolve the followi
RD Sharma - MathematicsSolve : <span lan
RD Sharma - MathematicsSolve the followi
RD Sharma - MathematicsSolve the followi
RD Sharma - MathematicsFind the general
RD Sharma - MathematicsFind the general
RD Sharma - Mathematics