Q. 2 G5.0( 1 Vote )
Find the general solutions of the following equations :
tan 2x tan x = 1
Answer :
Ideas required to solve the problem:
The general solution of any trigonometric equation is given as –
• sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z.
• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z.
• tan x = tan y, implies x = nπ + y, where n ∈ Z.
Given,
⇒
⇒
We know that: cot θ = tan (π/2 – θ)
∴
If tan x = tan y, then x is given by x = nπ + y, where n ∈ Z.
From above expression, on comparison with standard equation we have
y =
∴
⇒
⇒ ,where n ϵ Z ….ans
Rate this question :






















Solve the following equations :
sin x – 3 sin 2x + sin 3x = cos x – 3 cos 2x + cos 3x
RD Sharma - Mathematics3sin2 x – 5 sin x cos x + 8 cos2 x = 2
RD Sharma - MathematicsSolve the following equations :
cos x + sin x = cos 2x + sin 2x
RD Sharma - MathematicsSolve :
Solve the following equations :
3 tan x + cot x = 5 cosec x
RD Sharma - MathematicsSolve :
Solve the following equations :
4 sin x cos x + 2 sin x + 2 cos x + 1 = 0
RD Sharma - MathematicsSolve the following equations :
5 cos2 x + 7 sin2 x – 6 = 0
RD Sharma - MathematicsFind the general solutions of the following equations :
Find the general solutions of the following equations :