Answer :
Equation of the circle,
x2 - 6x + y2 + 12y + 15 = 0
x2 - 2(3)x + 32 + y2 + 2(6)y + 62 + 15 – 9 + 36 = 0
(x – 3)2 + (y-(-6))2 - 30 = 0
(x – 3)2 + (y-(-6))2 = (√30)2
Since, the equation of a circle having centre (h,k), having radius as "r" units, is
(x – h)2 + (y – k)2 = r2
Centre = (3,-6)
Area of inner circle = units square
Area of outer circle = units square {Given}
So,
r2 = 60
Equation of outer circle is,
(x – 3)2 + (y-(-6))2 = (√60)2
x2 - 6x + 9 + y2 - 12 y + 36 = 60
x2 - 6x + y2 +12y +45 – 60 = 0
x2 - 6x + y2 + 12y – 15 = 0
Hence, the required equation of the circle is x2 - 6x + y2 + 12y – 15 = 0.
Rate this question :


The equation of t
RD Sharma - MathematicsFind the eq
RD Sharma - MathematicsFind the eq
RD Sharma - MathematicsShow that t
RD Sharma - MathematicsIf the circle x<s
RD Sharma - MathematicsFind the eq
RD Sharma - MathematicsFind the eq
RD Sharma - MathematicsThe circle x
RD Sharma - MathematicsIf the circles x<
RD Sharma - MathematicsIf the centroid o
RD Sharma - Mathematics