Q. 14

# Evaluate :</p

To find: Value of

Formula used: (I)

(ii) (a+b)n = nC0an + nC1an-1b + nC2an-2b2 + …… +nCn-1abn-1 + nCnbn

(a+1)5 = 5C0a5 + 5C1a5-11 + 5C2a5-212 + 5C3a5-313 + 5C4a5-414 + 5C515

5C0a5 + 5C1a4 + 5C2a3 + 5C3a2 + 5C4a + 5C5… (i)

(a-1)5

5C0a5 - 5C1a4 + 5C2a3 - 5C3a2 + 5C4a - 5C5 … (ii)

Substracting (ii) from (i)

(a+1)5 - (a-1)5 = [5C0a5 + 5C1a4 + 5C2a3 + 5C3a2 + 5C4a + 5C5] - [5C0a5 - 5C1a4 + 5C2a3 - 5C3a2 + 5C4a - 5C5]

2[5C1a4 + 5C3a2 + 5C5]

2

2[(5)a4 + (10)a2 + (1)]

2[5a4 + 10a2 + 1] = (a+1)5 - (a-1)5

Putting the value of a = in the above equation

= 2[54 + 102 + 1]

2[(5)(9) + (10)(3) + 1]

2[45+30+1]

152

Ans) 152

Rate this question :

How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation
view all courses
RELATED QUESTIONS :

Prove that RS Aggarwal - Mathematics

Using binominal tRS Aggarwal - Mathematics

Evaluate :
</p
RS Aggarwal - Mathematics

Using binomial thRS Aggarwal - Mathematics