Answer :
Let (x1,y1) be any point lying in the equation x+ y = 4
∴ x1 + y1 = 4 …(i)
Distance of the point (x1,y1) from the equation 4x + 3y = 10
[given]
⇒ 4x1 + 3y1 – 10 = ±5
either 4x1 + 3y1 – 10 = 5 or 4x1 + 3y1 – 10 = -5
4x1 + 3y1 = 5 + 10 or 4x1 + 3y1 = -5 + 10
4x1 + 3y1 = 15 …(ii) or 4x1 + 3y1 = 5 …(iii)
From eq. (i), we have y1 = 4 – x1 …(iv)
Putting the value of y1 in eq. (ii), we get
4x1 + 3(4 – x1) = 15
⇒ 4x1 + 12 – 3x1 = 15
⇒ x1 = 15 – 12
⇒ x1 = 3
Putting the value of x1 in eq. (iv), we get
y1 = 4 – 3
⇒ y1 = 1
Putting the value of y1 = 4 – x1 in eq. (iii), we get
4x1 + 3(4 – x1) = 5
⇒ 4x1 + 12 – 3x1 = 5
⇒ x1 = 5 – 12
⇒ x1 = - 7
Putting the value of x1 in eq. (iv), we get
y1 = 4 – (-7)
⇒ y1 = 4 + 7
⇒ y1 = 11
Hence, the required points on the given line are (3,1) and (-7,11)
Rate this question :


<span lang="EN-US
RS Aggarwal - MathematicsThe distance betw
RD Sharma - Mathematics<span lang="EN-US
RS Aggarwal - MathematicsFind the equation
RD Sharma - MathematicsFind the equation
RD Sharma - MathematicsArea of the trian
RD Sharma - Mathematics<span lang="EN-US
RD Sharma - Mathematics<span lang="EN-US
RD Sharma - Mathematics<span lang="EN-US
RD Sharma - MathematicsA point equidista
RD Sharma - Mathematics